

1 Introduction

Generate 3D urban scene on a given or predicted geometry and render Task arbitrary 2D views with robust consistency

Why 3D generation?

- Consistency naturally holds
- Do not need preset trajectory

Why diffusion models instead of GANs? Better performance

- Stability during training

2 Related Work

Foundation work

- Diffusion models
- Point-NeRF
- Minkowski Engine

Baselines w/ different generative models

- Sat2Vid: 3D GAN-based method
- InfiniCity: 2D GAN-based method
- **MVDiffusion**: 2D diffusion-model-based method

3 Method

Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion Zuoyue Li Zhenqiang Li Zhaopeng Cui Marc Pollefeys Martin R. Oswald

4 Experiment

Baseline comparison	Γ
LlaliCity dataaat	

- HoliCity dataset
- GT geometry
- Various metrics

Method / Metric	FVD↓	KVD _{×100} .
Sat2Vid	37.06	$4.03^{\pm 0.05}$
InfiniCity	_	-
MVDiffusion	22.79	$2.36^{\pm 0.03}$
Ours	20.30	1.90 ^{±0.03}

Model generalization

OmniCity dataset, long-seq generation on predicted geometry

 $\text{KID}_{\times 100}\downarrow$

 $13.76^{\pm 0.10}$

 $8.40^{\pm 0.10}$

 $4.14^{\pm 0.07}$

 $5.91^{\pm 0.06}$

FID↓

137.84

108.47

50.78

71.98

PSNR↑

25.25

17.56

31.54

SSIM↑

0.741

0.593

0.956

LPIPS↓

0.252

0.259

0.237

User study

2.92%

15.62%

81.46%

Exemplary scene used for training

Variant / Metric	$ $ FID \downarrow	ŀ
w/o pt-rsmp	131.38	1
w/o pt-aggr	85.58	
w/o dep-sup	80.40	
Ours	71.98	

5 Conclusion

Contributions

- 3D sparse diffusion models
- Integrated with neural rendering
- Photorealism & robust consistency
- Large-scale 3D scene generation

Future directions

- 3D sparse latent diffusion models
- Advanced scene representation
- Conditional generation

Code

